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Abstract-The problem of a center-cracked strip subjected to uniform remote anti-plane shear stress is
transformed to a problem in a hodograph plane which is solved exactly by Mellin transform and Wiener-Hopf
technique. The material of the strip satisfies a pure power hardening stress strain relation and the results are
valid for both deformation and flow theories of placticity, Numerical values are given for the crack opening
displacement 5 and Rice's path independent J integral for several values of the power hardening exponent n
and crack width to strip width ratios. Approximate asymptotic formulas are presented for J and 5 for large n,

l. INTRODUCTION

Recent experimental and analytic studies [1,2] have demonstrated that Rice's J integral [3, 4]
provides a good elastic-plastic fracture criterion, A number of studies (e,g. [5, 6]) have
consequently been devoted to the accurate determination of J and the crack opening
displacement. Bucci et al. [7], Rice et al. [8] and Shih [9] have proposed estimation procedures for
the determination of 1. The estimates in[9] are based on a solution by finite element technique of
the same problem considered in this paper. Further discussions of the application of the results
contained here are therefore unnecessary.

The edge-cracked strip subjected to remote anti-plane shear is analyzed by a hodograph
transformation and Wiener-Hopf technique. Clearly the solution to the edge-cracked strip
provides the solution to the center-cracked strip, double edge crack and periodically distributed
collinear cracks. The method used here is presented more fully in [5] where the solution of the
edge crack in a semi-infinite body is given.

2. DIFFERENTIAL EQUATION

We consider an infinite strip of isotropic solid of width b occupying the region
- a :s; x :s; b - a with an edge crack y = 0, - a :s; x :s; 0 (see Fig. la). The body is subjected to out
of plane uniform shear stress T yz = Too at y = ± 00. The surfaces x = - a and x = b - a are stress
free. For small strains the only nonvanishing components of displacement vector, strain and
stress tensors are w, 'YxZ> 'Yyz and Txz> Tyz> respectively. The strain-displacement relations are
'Yxz = oW lox, 'Yy, = oW loy. The compatibility and equilibrium equations are

o'Yxz loy = 0'YyZ lox, and OTxz lox + OTyz Ioy = O.

We assume a pure power hardening stress strain law

(1)

where a is a nondimensional constant which can be omitted without any loss in generality. It is
however retained for consistency with the literature. To and 'Yo are reference values of the
principal stress T = (T~z + T;z )1/2 and the principal strain 'Y = ('Y~x + 'Y;z )t/2. The resulting equation
for w

2 1 ( 1)V w = 2 1- n Vw . VIn (V w . Vw) (2)
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is nonlinear and homogeneous of degree 1 and is not readily solvable by analytic methods. It has
been shown [10, 11,5] that it is convenient to use a hodograph transformation (Fig. Ib). Following
very closely the analysis in[5] we introduce a scalar potential function if! such that

(3)

where x is the position vector and V'Y is the gradient operator with respect to the strain vector

'Y = (')Ix" ')Iyz).

The differential equation and boundary conditions satisfied by if! are

1 1
n'l',pp +-'l',P +2'l',<1><P = 0

P P
p > 0, - 11' 12 < fj> < 11' 12 (4)

where

{
P O<p<e

'l' ,q, (p, O±) = _ cp e<p<1

'l',q, (p, ± 11' 12) = 0

'l'=if!la')lo, e=')Ioo/')lo<l, c=bla-l, 'l',q,(p,O+)=lim'l'q,(p, h), h>O
h_O

')Ixz 1')10 = - p sin fj>

')Iyz 1')10 = p cos fj>

(5)

(6)

(7)

')100 is the strain corresponding to the remotely applied stress and ')10 = ')Ixz at the point G:
(x, y) = (b - a, 0). A comma subscript denotes differentiation with respect to subsequent
subscript(s). Note that e depends on the solution hence the problem is nonlinear.

3. WIENER-HOPF PROBLEM

The problem consisting of eqns (4)-(6) can be solved by Mellin transform and Wiener-Hopf
technique. Application of this technique requires knowledge of 'l' as p~ 00 and p~ 0 given by [5]

(8)
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and

'1'.<1> ~ p cos cf>} 0
\T# • A.. as p~ •
'1'.P~ SIn,/,

Now we introduce the Mellin transform qr of 'I' defined by

Taking the transform of (4)-(6) gives
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(9)

(10)

qr(s, cf» = [e s
"'

l
_ c 1-e

S

+! +V(S)] cos w(s)(cf> -1T/2)
s+1 s+l ().1T()w s SIn-ZW s

where v(s) is the Mellin transform of

o< Re s < 1/n, cf> > 0 (11)

O<p<1
p>1

(12)

and

w 2(s)=s[n(s+l)-I]

For

(13)

cf> <0, (14)

Define

then from (11) and (14) we have

1 [''''1 1 ''''1 ]2g(s)= :+I-C ;:1 +v(s) p(s)

where

O<Res<l/n

(15)

(16)

(17)

We note that from (12) and (8) v(s) is analytic in the half-plane Re s < lIn. Also since 'I'(p, cf»
is continuous on the half-line cf> = 0, p > 1, then g(p) =0 for p > 1 and from (9) g(s) is analytic for
Re s > O. Denoting functions analytic for Re s > 0 by subscript + and functions analytic for
Re s < lIn by subscript - (16) becomes

0< Re s < lin. (18)

It is noteworthy that the second term in the bracket in (11) is an entire function and thus in
principle may be retained as an entity during the analysis. Nevertheless the application of
Wiener-Hopf technique to the resulting equation gives an entire function with complicated
behavior at s = 00.

The solution of the Wiener-Hopf problem (18) is obtained in two steps. The first step consists



1294

of decomposing p (s) into a quotient

1. C. AMAZIGO

pes) = N-(n, s)/D+(n, s) (19)

where N _en, s) has no poles or zeros for Re s < l/n, and D+(n, s) has no poles or zeros for
Re s > O. The functions Nand D are given in[5) and we summarize their pertinent properties.

N-(n, s) = 2-
sy

(n
1 J1 ('Yt - 2~~ is) exp (S\/(n)/2k +1) / D(I3t

- sV(n )/2k) exp (sV(n )/2k) (20)

D+(n, s) = 2sY(n 1- I 1l's(s + I-1/n) D(~~n) s -13.-) exp (- sV(n)/2k)/

J1 (~~ is -'Y'-) exp ( - sV(n )/(2k + 1)) (21)

where

Asymptotically

s = s +(n - 1)/2n

'Y'''' = n 112{ -1 + l/n ± [(1-l/n)2 + 4(2k + I)2/nr'2}/2(2k + 1)

13/ = n 112{ -1 + l/n ± [(1- 1/n)2 + 16k 2/n r'2}/4k.

(22)

(23)

N-(n, s)-( -1l'S/2)112n114tn-I)12Y(nl as Isl~oo, O<arg s <21l' (24)

D+(n,s)_(1l'/2)112n314s3/2tn-11/2Y(nl as Isl~oo, -7T< args<7T (25)

Substituting (19) into (18) gives

(26)

Now the first set of terms on the right hand side of (26) must be decomposed into the sum of a +
function and a - function. Noting that N -en, s) has simple poles at s bt where

(27)

a decomposition is accomplished by separating the principal parts of the Laurent series of
N -en, s) at these poles from the function. Thus

s+1 ( ~ A ) (S+l ~ A )
E+ tN-(n, s) = 2: _b' + + E+ 1N-(n, s)- 2: -b'+s .-1 S • _ S '~I S • +

where A. is the residue of ES+1N_(n, s)/(s + 1) at s = b.+ and is given by

A. = _ 2kE 1: b'+2-Y (nlb.+. . Do ('Ym+-~ bt) exp (V(n)b./(2m + 1))

V(n)(1 + b. ) exp (\/(n)b./2k) DI (I3 m+- ~~) bt) exp (V(n)b./2m)

m'"

where b. = b.+ + n2~ 1. The second term in the brackets in (26) is decomposed more readily as

N-(n,s) (N_(n,-I)) +(N_(n,S)-N_(n,-1))
s+l s+l + s+l _

(28)

(29)

(30)
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Although the decomposition used in (30) gives a simpler decomposition of the left hand side of
(28), such a splitting complicates considerably the subsequent problem of determining the entire
function.

Substituting the decompositions (28) and (30) into (26) gives

L b(E'+1 ~ Ak) (N_(n,-I))
-2 g+(s)D+(n,s)-- -+I N-(n,s)- L.J~b+ +C +1

a s k~IS k + S +

=E.(i~) - c(N_(n, s) N-(n, 1») + iHs)N-(n, s). (31).
a k~1 s - bk _ S +1 -

Now since the left hand side is analytic for Re s > 0 and the right hand side is analytic for
Re s < lIn each must be the analytic continuation of the other. Hence each represents the same
entire function E (s). The entire function is determined by obtaining its asymptotic behavior as
Is 1-'>00 in both half planes.

The dominant asymptotic behavior of v(s) and g+(s) is determined by the behavior of v(p)
and g(p) in the neighborhood of p = 1. Introduce the variables rt, (3 through the equations

- r, sin (3 = n 1/2 y,% Iya

rl cos (3 = yy, !ya

and seek the asymptotic behavior of 'l' as p -'> 1± in the form

(32)

(33)

Substituting (32), (33) and (7) in (4) and noting that by symmetry arylay =0 (i.e. a2JjJliJr;. =0)
gives

Thus

and

'l'(p, 0+) - (constant)(1- P)3/2 as p -'> 1- (34)

The use of (34) in the definition of v-(s) and g+(s) and application of Watson's lemma[12] gives

v_(s) __ l
s

as Isl-'>oo, Res < lIn

g+(s) - (constant) . s -5/2 as Is 1-'> 00, Re s > 0
(35)

From the asymptotic behaviors (24), (25) and (35) it follows that each side of (31) tends to zero as
Isl-'>oo in its domain of definition. Consequently by Liouville's theorem the entire function E(s)
is identically zero. Thus from (31)

E. E,+1 __c_+ v s =E. E,+1 _ 1 [CN-(n,-I)+E.i~]
as+l s+1 -() as+l N-(n,s) s+1 ak=ls-bt

and substituting this result in (11) and taking the inverse Mellin transform gives

1 fV+'~ {b E,+1 1 [CN_(n, -1) +E. ~ ~+]} cos w(s)(cP - 11!2) ds
'l'(p, cP) = 2111' v-,.- P-, -a s + 1- CC"N::--:"-(--:") +1 L.J b_ - n, s s a k = 1 S - k ( ) • 11 ()

w s Slfi2"W s

cP >0, 0< jJ < lIn. (36)
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We observe that the integrand has simple poles at s = lIn -1, -1, 0, bm-, bm+, a;:'-l, m = 1, 2,
3, ... where

In the neighborhood of p = 0 the pole s = lIn - I gives a contribution to 'J! that contradicts
(9). Thus we must eliminate this pole by a proper choice of E. Setting the quantity in braces in (36)

equal to zero for s = lIn - I gives the following implicit relation for E.

(
I ) lin I 1 ~ A k

N~ n,--1 E =(l-a b)N-(n,-I)+-.L:.J b+ 1 II .
n n k~1 k + - n

Note from (29) that Ak depends on E.

It follows from the theory of residues that for 4> > 0

'J!(p, 4» =

(37)

O<p<E

(38)

E<p<1

p > I

where lim = am+ + (n - 1)/2n, w'(-) = dw (. )/ds. Equations (37) and (38) give the exact solution to
the problem in the hodograph plane.

4. ] INTEGRAL AND CRACK OPENING DISPLACEMENT

The path independent integral, J, is defined by [3,4]

i au
J = [Wdy - T . - ds]

r ax

where r is any simple contour in the xy-plane encircling the crack tip, W is the strain energy
density, T is the stress vector acting on r, and u is the displacement vector. In terms of the scalar
potential function 'I' this integral becomes

1+1/n -lIn_ na'Y~ a
J - - l/n 1+1/n

'Yo E

a2
fnl22+lln_ ,T, . A.. dA... P 2 't' sm '+' '+'

op -n12
p>l. (39)

Substituting for 'J! from (38) and performing the trivial integration gives

(40)
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2I/v'n[!? i +A k - ncN_(n, -1)] fI ({3+ __1_) exp «n + 1)/4py'n)

Q( ) = a k=I bk - (lIn) n + 1 p=I 2py'n
n, e = 1)

y'n exp «n + 1)/2y'n)D(1'/ (2p + l)y'n exp «n + 1)/2(2p + l)y'n)

(41)

(The expression (60) for Q(n) in [5] should be divided by exp «n + 1)/2y'(n)) and 2v'(n) should be
t/v'(n»).

The crack opening displacement 8 is defined by

8=w(x=-a,Y O+)-w(x -a,y=O-)

and in terms of the scalar potential '¥ is

Substituting for '¥ from (38) gives

~= tb_1){N/O)[(l--ba)N_(n,-l)-iAklb/]-e}.al'= 1rae n - n, k=l

(42)

(43)

The following scheme proved useful in obtaining numerical values of J and 8 for various
values of the power hardening exponent n and crack width a to strip width b ratios. For each
value of n and alb eqn (37) is solved iteratively for e to within 0·01% error. This value of e is
then used to compute J and 8. The product series were computed accurately by means of double
precision arithmetic. The results of these computations for J and 8 are given in Table 1 and
plotted in Fig. 2.

Table I.

~ 1 1.5 2 3 5 10 20 50

• 2.864 3.865 5.788 8.5240 1.571 1.939 2.271 13.87

1 1.392 1.636 1.791 2.023 2.245 2.265 1.936 1.325'8

1 1.243 1.369 1.444 1.504 1.482 1.282 .995 .663'4

1 1.000 1.003 .982 .924 .817 .652 .498 .3312

1. .805 .750 .703 .634 .547 .435 .332 .2214

7 .718 .653 .607 .544 .469 .373 .284 .189'8

1 .637 .573 .531 .476 .411 .326 .249 .166

~ 1 1.5 2 3 5 10 20 50

•0 2.000 2.334 2.644 3.209 4.175 6.045 8.727 14.01

1 1.761 1.944 2.063 2.234 2.373 2.273 1.852 1.206'8

t 1.571 1.592 1.612 1.591 1.464 1.152 .824 .517

1 1.122 1.025 .934 .784 .594 .398 .275 .1722"

1- .685 .529 .424 .304 .205 .133 .0917 .05754

7 .4:2 .280 .205 .135 .0880 .0570 .0393 .0246'8

'Results for alb =0 are taken from [5), where n =30, 50, 100 should be n =50, 100, 1000.
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As shown in [6] convenient normalizations for J and 0 are

- J (a)" JI(To'Yoa)
J = -aT~-'Y~ 1- b = -(-=-b---'--a)'-'(:..L..:..:::p"---=)"-:-7+I

a: -b- PLim;'

and

(44)

where P = Toob is the total shear load per unit thickness of the strip and PUm;' =To(b - a) is the
limit load for a perfectly plastic strip (n = 00).

For alb ~ 1 (37) has the asymptotic solution

€ I/n == (1- alb )N..(n, -l)/N-(n, -1 + lIn) +0((1- alb))

With this value for € the exact expression for J was computed and the results are given in Table
la and graphed in Fig. 2a. §~ 0 as aIb~ 1.

For n ~ I the behavior of 8 and J are approximately given by the following unproved formula

and

§ (11')3/2 bla-l
= 2 V((n -I)e)

J = (!!.)312 bIa
2 \l(n) exp ((n + 1)/2nr

(45)

(46)

Equations (45) and (46) which are not uniformly valid as alb ~O give results that are in error by
less than 5% for values of n and alb to the right of the darkened grid in Table 1. These simple
formulas may prove important in estimation procedures.

For the elastic strip (n == I) the product expansions and series were also evaluated analytically
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giving known results [4, 13]

J f(a'Tro,,/oo) == (b fa) tan (7Ta f2b)

and

8f(a,,/oo) == (2bf7Ta) In [(1 +sin (7Taf2b))f(1- sin (7Taf2b))].

1299

(47)

A comparison of the exact results in Table 1 with those of [9] reveals that the finite element
technique used by Shih is very accurate. The maximum error ranges from 0·6% for n == 2 to 6%
for n == 10. The near tip behavior given in [5] in terms of J for the center-cracked infinite solid
remain valid for the strip except that the appropriate J must be used.
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